20 июля 2019, суббота

Справочно-информационный центр

Могут ли высотные здания иметь околонулевое потребление энергии?

Алессандро Сандэлевски, дипломированный инженер, почетный член CIBSE, ASHRAE, эксперт LEED GA, независимый консультант В наше время высотные здания строятся повсеместно во всех крупных городах мира. Например, в странах Европейского союза действующие законы требуют, чтобы все здания, вводимые в эксплуатацию после 2020 года, имели околонулевое потреб­ление энергии (NZEB). Возможно ли построить высотное здание с околонулевым потреблением энергии? Чтобы ответить на вопрос, рассмотрим специфику проектирования систем ОВиК высотных зданий и концептуальные решения построения инженерных систем, которые позволяют достичь околонулевого потребления энергии.

Европейская директива 2010/31/ЕС по энергоэффективности зданий (Directive 2010/31/EU on the energy performance of buildings – EPBD) вводит понятие здания с околонулевым потреблением энергии (Near Zero Energy Buildings – NZEB). Ст. 9 данной директивы вводит следующие требования к государствам – членам ЕС:

  • Все здания, принадлежащие общественным организациям и государственным институтам, вводимые в эксплуатацию после 31 декабря 2018 года, должны иметь околонулевое потребление энергии.
  • После 31 декабря 2020 года все здания, вводимые в эксплуатацию, должны иметь околонулевое потребление энергии.

При этом государства – члены ЕС самостоятельно разрабатывают национальные стандарты и определяют, какие здания можно отнести к NZEB. В Италии, например, в соответствии с декретом от 26 июня 2015 года зданием с околонулевым потреблением энергии может считаться здание, в котором 50 % энергопотребления систем отопления, вентиляции, кондиционирования и ГВС обеспечивается за счет возобновляемых источников энергии.
Оставив в стороне юридические тонкости национальных стандартов, рассмотрим общее значение терминов ZEB, nZEB и NZEB.

ZEB (Zero Energy Building) – здание с нулевым потреблением энергии
Здания с нулевым потреблением энергии полностью покрывают свою потребность в энергии за счет возобновляемых источников. По сути, это утопия, поскольку при существующих технологиях энергия из возобновляемых источников не может быть доступна круглый год в достаточном количестве. Например, солнечная энергия недоступна в ночное время и ограниченно доступна зимой. При этом системы аккумуляции энергии слишком дороги и требуют значительного пространства в здании для размещения.

nZEB (Net Zero Energy Building) – здание с чистым нулевым потреблением энергии
Этот тип зданий подключен к внешним сетям электроснабжения и в случае профицита генерации энергии от возобновляемых источников передает излишки в сеть, а в случае дефицита генерации энергии от возобновляемых источников потребляет энергию из внешних сетей. При этом итоговый годовой баланс потребления энергии из внешних сетей и передачи энергии во внешние сети должен быть равен нулю. В отличие от ZEB, здания с чистым нулевым потреб­лением энергии в периоды дефицита генерации энергии от возобновляемых источников энергии могут потреблять энергию от сжигания ископаемых видов топлива, поскольку в ночное время (наступает одновременно на 2,5 континентах – Европа, Африка и Ближний Восток) только этот вид генерации энергии может обеспечить требуемый уровень потребления. И не стоит забывать о серьезных проблемах с пространством для размещения оборудования для генерации энергии от возобновляемых источников – при дефиците свободных площадей достичь чистого нулевого потребления энергии невозможно. Стоит упомянуть и размер капитальных затрат на реализацию nZEB-решений: достижение нулевого потреб­ления – это асимптотический процесс (закон убывающей отдачи, Шеппард, 1974 год).

Рис. 
Закон убывающей отдачи

NZEB (Nearly Zero Energy Building) – здания с околонулевым потреблением энергии
Попытаемся определить, что же именно считать «околонулевым». В Италии для производства 1 000 кВт•ч/год в среднем требуется 6–7 м2 фотоэлектрических панелей. Энергия от возобновляемых источников всегда должна анализироваться в привязке к площади, занимаемой оборудованием для генерации.
Для понимания термина «околонулевое» используем два коэффициента – SFVeq и PtZ.

  1. SFVeq (Equivalent Photovoltaic Surface) – это эквивалентная площадь фотоэлектрических модулей. Другими словами, это площадь фотоэлектрических модулей, необходимая для покрытия энергопотребления здания в годовой перспективе и достижения показателей чистого нулевого потребления энергии. Для того чтобы рассчитать SFVeq здания, необходимо разделить его годовое энергопотребление на энергию, получаемую за год от 1 м2 фотоэлектрического модуля в регионе, где расположено здание. Определить эквивалентную площадь фотоэлектрических модулей для здания, потребляющего только природный газ и энергию от внешней сети электроснабжения, можно по формуле (1) (см. Формулы).
  2. PtZ (Proximity to Zero) – коэффициент близости к нулю. Этот коэффициент показывает отношение площади фактически установленных фотоэлектрических модулей к площади фотоэлектрических модулей, необходимых для достижения чистого нулевого потребления энергии зданием, и позволяет оценить, насколько близко здание к «околонулевому» потреблению (см. формулу (2)).

Энергомоделирование для офисных зданий и отелей стандартной высоты показывает, что в Италии достижение 100 %-ного PtZ на практике невозможно. Если в расчете учитывать все системы здания, потребляющие электроэнергию (лифты, эскалаторы и прочее), то показатель 50–60 % уже можно считать успешным результатом.
В высотных зданиях обеспечить близость к нулевому потреблению еще сложнее в силу специфики инженерных систем, описанной далее по тексту.

Классификация высотных зданий

Высотные здания могут быть классифицированы согласно терминологии ASHRAE как: высотные – выше 100 м; супервысотные – выше 300 м; мегавысотные – выше 600 м; убервысотные (термин не является официальным) – выше 1 000 м.
При проектировании высотных зданий особое внимание нужно уделить, во-первых, расчету теплопоступлений и теплопотерь, во-вторых, эффекту тяги и, в-третьих, проектированию гидравлических систем.

Расчет теплопоступлений и теплопотерь

Температура и влажность наружного воздуха, атмосферное давление и плотность воздуха изменяются по мере увеличения высоты над уровнем моря. Стандартный подход, когда эти данные принимают едиными для всего здания, не проходит в случае высотных зданий. Расчет температуры, атмосферного давления и плотности воздуха выполняют по формулам (3)–(5), где за нулевую высоту принимают высоту над уровнем моря.
В качестве примера приведем распределение показателей для высотного здания в г. Джидда, Саудовская Аравия (высота 0 м над уровнем моря). Согласно данным ASHRAE, температура воздуха для данного региона 41 °C по сухому термометру и 30 °C по влажному термометру (табл. 1).

Таблица 1
Характеристики наружного воздуха на разных высотных отметках, г. Джидда, Саудовская Аравия

Если принять параметры воздуха в помещении 24 °C при относительной влажности 50 %, то в момент времени, когда на отметке уровня моря показатели наружного воздуха (тео­ретически) будут равны показателям воздуха в помещении, отклонения значений температуры и влажности наружного воздуха по высоте здания указаны в табл. 2.

Таблица 2
Разница температуры и влажности воздуха в помещении и наружного воздуха для высотного здания в 
г. Джидда, Саудовская Аравия

Очевидно, что стандартный подход, при котором параметры наружного воздуха принимаются без учета их изменений по высоте здания, приведет к тому, что в теплый период года система будет переразмеренной (большой запас мощности), а в холодный период года система будет иметь дефицит мощности.

В следующем номере журнала «Энергосбережение» будет рассмотрено влияние эффекта тяги и гидравлических систем в высотных зданиях, а также дан ответ на вопрос, может ли высотное здание иметь околонулевое потребление энергии.

Перевод и техническая редактура выполнены В. В. Устиновым

Источник информации: https://www.abok.ru/for_spec/articles.php?nid=7261

Мероприятия

Июль
Пн Вт Ср Чт Пт Сб Вс
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31