22 февраля 2019, пятница

Справочно-информационный центр

Сравнительный анализ применения биогазовых технологий и других источников энергии

З. Мамадалиева, Т.Каюмов, М.Султонов, Ф.Савриев, Ташкентский институт ирригации и механизации сельского хозяйства, Наманганский инженерно-технологический институт Данная статья описывает анализ возможностей энергосбережения и повышения энергетической эффективности путём внедрения кроме традиционных ресурсов биогазовых технологий. Здесь приводятся примеры получения тепловой и электрической энергии из биогазовых установок особенно в сельской местности на фермерских хозяйствах.

На сегодняшний день одной из основных задачей энергетики является энергосбережение и повышение энергетической эффективности путём внедрения кроме традиционных ресурсов альтернативные источники энергии. В Узбекистане широко применяются такие виды альтернативных источников энергии как энергия солнца, малых рек и ручьёв, ветра, геотермальных источников и энергия биомассы. Ряд законодательных актов правительства Республики Узбекистан, в том числе постановления Президента от 1 марта 2013 г. «О мерах по дальнейшему развитию альтернативных источников энергии», от 26 мая 2017 г., ПП-3012 “По дальнейшему развитию возобновляемой энергетики, повышению энергоэффективности в отраслях экономики и социальной сфере на 2017-2021 годы, от 8 ноября 2017г. ПП-3079 «О мерах по обеспечению рационального использования энергоресурсов» ещё ярче показали всю актуальность и неотложность получения возобновляемой энергии и переработке сельскохозяйственных отходов.

В Узбекистане энергетическое оборудование централизованных систем энергоснабжения, технически устарело, полностью выработано, вследствие чего требует незамедлительного обновления. Опыт последних лет обнажил недостатки централизованных систем, которые при передаче электроэнергии и тепла горячей воды сопровождаются, соответственно, 10% и 30% потерями.

Главным фактором, заставляющим переходить на альтернативные средства снабжения теплом и электроэнергией, является изношенность тепло- и электросетей, а также низкое качество электроэнергии. Этой альтернативой стали когенерационные установки малой мощности, так называемые мини-ТЭЦ, способные обеспечить тепловой и электрической энергией отдельные здания или предприятия.

В качестве топлива для таких когенерационных установок может использоваться природный газ, пропан, биогаз, попутный нефтяной газ, газ сточных вод и др. Производство собственной энергии позволяет не зависеть от теплоэнергетических компаний и существенно сократить собственные затраты на энергоносители.

Как и во многих других южных странах чаще всего в Узбекистане широко применяются гелиоэнергетические установки. Применение остальных альтернативных источников энергии пока только развивается, причём не совсем интенсивно. Если принять во внимание, что более 60 % населения проживают в сельской местности, где более 80% заняты в земледелии, на данном этапе появляется интерес к применению биогазовых технологий. Внедрение биогазовых установок в сельской местности позволит использовать биогаз не только для работы бытовых приборов, но и для выработки электричества и тепловой энергии при помощи специальных генераторных установок.

Чем же является биогаз. Биогаз – смесь газов, включающих в себя: метан (СН4) - 55-70% и углекислый газ (СО2) – 28-43%, а также другие газы в очень малых количествах, например – сероводород (Н2S). Биогаз получается в результате анаэробного брожения, то есть происходящей безвоздушной ферментации органических веществ различного происхождения. В среднем 1 кг органического вещества, при 70% биологическом разложении, производит 0,18 кг метана, 0,32 кг углекислого газа, 0,2 кг воды и 0,3 кг неразложимого остатка. Из 1 м3 биогаза можно вырабатыватья одновременно 2,4 кВтч электрической +3,2 кВтч тепловой энергии.

В любом сельском хозяйстве собирается значительное количество навоза, остатков растений, различных отходов. Обычно их используют как органическое удобрение, но только после предварительного разложения. Однако мало кто знает, какое количество биогаза и тепла выделяется при ферментации. А ведь эта энергия тоже может сослужить хорошую службу сельским жителям.

Вырабатываемый биогаз после очистки и компрессии, может использоваться для получения электрической и тепловой энергии, а также в бытовых целях для потребления населением. Отходы биогазовых установок, получаемые после анаэробного брожения биомассы, являются качественными экологически чистыми удобрениями, а также применяться в качестве кормовых биодобавок для рыбных хозяйств и птицеферм.

При расчёте эффективности биогазовых установок можно привести сравнительный анализ основной продукции- биогаза и других энергоресурсов, которые мы можем видеть в таблице.

Таблица. Сравнение расхода на м3 биогаза и других энергоисточников

Горючее

Отношение невосполняемых энергоресурсов на 1 м3 биогаза

Отношение 1 м3 биогаза на невосполняемые энергоресурсы

Природный газ, м3

0,75

1,34

Бензин, л

0,82

1,28

Электрическая  энергия, кВт

2

1,1

Каменный уголь, кг

0,9

1,1

Исходя из сведений данной таблицы, можно легко определить эффективность биогаза и его выгоду в цене,  особенно при ситуации постоянного дефицита возобновляемых энергоисточников.

Преимущества биогазовых электрических генераторов по сравнению с аналогами:

- замены масла не 500, а 2000 моточасов,

- высокий эл. КПД до 40 %, сумм.КПД эл.+тепло до 90%,

- высшая надежность. 

Для рентабельности биогазовой установки решающим фактором является КПД при выработке электроэнергии. При сравнении эффективности выработки энергии различают такие уровни эффективности:

  1. Механический КПД двигателя в генераторе – соотношение между выработанной в двигателе механической энергией и потенциалом энергии использованного горючего. Часто механический и электр. КПД генератора упрощенно приравнивают (среди прочего чтобы получит преимущества перед конкурентами), чего допускать не следует. Механическое КПД зависит от типа двигателя и его размеров, для газовых и газожидкостных двигателей он составляет до 45%.
  2. КПД генератора: в генераторе просходит преобразование механической энергии в электрическую. КПД остальных генераторов с мощностью более 20 кВт составляет 90-96%. Все остальное превращается в тепло генератора.
  3. Электрический КПД: чтобы рассчитать электр. КПД генератора, необходимо механичекий КПД умножить на КПД генератора. Пример: 40% механич. КПД и 93% КПД генератора дают электр. КПД 0,40 х 0,93 = 37,2%
  4. Термический КПД: кроме механической энергии при переходе энергии от одного вида в другой в двигателе возникает большое количество избыточного тепла, частично в виде отработанных газов, а частично в охлаждающей жидкости, все остальное содержится в тепловом излучении. Термический КПД как правило выше электрического; он достигает в зависимости от типа строения двигателя и размеров, а также температуры используемого отводимого тепла до 55%.

Срок  покрытия расходов на постройку и эксплуатацию биогазовых установок  чаще всего чуть больше одного года, что  нетрудно определить ведь начиная с первичной загрузки биомассы до полного охватывания технологического процесса занимает  не меньше 100 дней [5]. Производство электрической  и тепловой энергии в установках на базе двигателя внутренного сгорания - наиболее распространный способ извлечения выгоды от биогазовой станции.  Электроэнергия может круглогодично использоваться как собственых нужд, так и для подачи в сеть.

 Нетрудно заметить,  что для повышения урожайности значительна основная часть спроса для внесении в почву органических удобрений. Так, биоудобрения получаемые на Каравулбазарском опытно промышленном биогазовом заводе, запущенном в 2016 г., за кг. составляют 1500 сум., в день составляют 37,5 млн.   

При постройке установок анаэробного брожения органического мусора и организации их эксплуатации, необходимо правильное определение на каких предприятиях они будут наиболее экономически эффективны, а также исходя из количества ежедневного выхода органического вещества [6].  Предприятия,  которые могут применять биогазовые технологии:

а) Животноводческие (молочные) фермы, птицеводческие фабрики, свиноводческие фермы и конюшни, а также свалки растительных  отходов сельского хозяйства;

б)  Тепличные хозяйства;

в) Перерабатываюшие предприятия: спирт, пиво, сахарные  заводы, заводы по переработке мясной, молочной, и сельскохозяйственной продукции;

г)  Городские очистные канализационние предприятия, в последнее время заводы  по переработке поверхностных водорослей сажаемых в дренажных коллекторах для снижения минерализации засоленных  земель.

д)  Очистные и мусорные свалки в городских и сельских местностях.

Исходя из вышеуказанного, можно организивать централизированные мусорные свалки по приёму органических отходов, где в качестве первичных приёмных ёмкостей  можно построить биогазовые установки. Средний объём данных биореакторов будет рассчитан на ежедневную переработку до 100 тонн в сутки. Расходы на постройку этих установок можно уменьшить путём хашара[1] и применением водонепроницаемых железобетонных резервуаров.

Необходимо отметить, что биогазовые установки помогут полностью  удовлетворить спрос населения на  минеральные удобрения, обеспечить электрической и тепловой энергией, а также дадут возможность снижения выброса вредных газов в атмосферу  и улучшения эколого-эпидемиологической, санитарной ситуации из-за скопления органических отходов.

Источник информации: http://www.energosovet.ru/stat913.html

Мероприятия

Февраль
Пн Вт Ср Чт Пт Сб Вс
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28